【阅】本周阅读摘选2023-11-13 → 2023-11-19

Posted by Cao Zihang on November 20, 2023 Word Count:
本周阅读摘选
2023-11-13 → 2023-11-19
目录

学术相关

Building Socially Intelligent AI Systems: Evidence from the Trust Game Using Artificial Agents with Deep Learning1

Reciprocal Human-Machine Learning: A Theory and an Instantiation for the Case of Message Classification2

A contrast-composition-distraction framework to understand product photo background’s impact on consumer interest in E-commerce3

A model of behavioral manipulation4

技术技巧

Chorme即将推出自动增加textarea高度的CSS属性

image-20231117125504006

基于截图自动生成前端

基于ChatGPT 4和DALL-E 3。

Demo

tldrow基于绘图前端生成

基于OpenAI。

基于自然语言生成Emoji

sad-sea-otter

AI前端评审与设计建议

img

GPT-4V 自动生成图表

ChatGPT-4 Vision可以基于图片生成图表。

img

基于ChatGPT应用导航网站

  1. Wu, J. X., Wu, Y. (Diana), Chen, K.-Y., & Hua, L. (2023). Building Socially Intelligent AI Systems: Evidence from the Trust Game Using Artificial Agents with Deep Learning. Management Science. https://doi.org/10.1287/mnsc.2023.4782 

  2. Te’eni, D., Yahav, I., Zagalsky, A., Schwartz, D., Silverman, G., Cohen, D., Mann, Y., & Lewinsky, D. (2023). Reciprocal Human-Machine Learning: A Theory and an Instantiation for the Case of Message Classification. Management Science. https://doi.org/10.1287/mnsc.2022.03518 

  3. Wang, M., Li, X., Liu, Y., Chau, P., & Chen, Y. (2023). A contrast-composition-distraction framework to understand product photo background’s impact on consumer interest in E-commerce. Decision Support Systems, 114124. https://doi.org/10.1016/j.dss.2023.114124 

  4. Acemoglu, D., Makhdoumi, A., Malekian, A., & Ozdaglar, A. (2022). A model of behavioral manipulation. Work in Progress